1.  Introduction

Mass-market mobile security threats have increased recently due to the growth of mobile technologies and the popularity of mobile devices. Accordingly, techniques have been introduced for identifying, classifying, and defending against mobile threats utilizing static, dynamic, on-device, and off-device techniques. Static techniques are easy to evade, while dynamic techniques are expensive. On-device techniques are evasion, while off-device techniques need being always online. To address some of those shortcomings, we introduce Andro-profiler, a hybrid behavior based analysis and classification system for mobile malware. Andro-profiler main goals are efficiency, scalability, and accuracy. For that, Andro-profiler classifies malware by exploiting the behavior profiling extracted from the integrated system logs including system calls. Andro-profiler executes a malicious application on an emulator in order to generate the integrated system logs, and creates human-readable behavior profiles by analyzing the integrated system logs. By comparing the behavior profile of malicious application with representative behavior profile for each malware family using a weighted similarity matching technique, Andro-profiler detects and classifies it into malware families. The experiment results demonstrate that Andro-profiler is scalable, performs well in detecting and classifying malware with accuracy greater than 98 %, outperforms the existing state-of-the-art work, and is capable of identifying 0-day mobile malware samples.



2.  Publication

Jang, Jae-wook, et al. "Detecting and classifying method based on similarity matching of Android malware behavior with profile." SpringerPlus 5.1 (2016): 1.

3.  Dataset Release
* For full dataset access
For academic purposes, we are happy to release our dataset. However, to avoid indiscriminate distribution of mobile malware, please send us a request sent by your official email account.

Contact : Huy Kang Kim (cenda at

* For quick access
We outline the false positive GooglePlay samples in the Andro-Profiler paper's subsection 'Discriminatory Ability Between Malware and Benign', which were diagnosed as malware by VirusTotal dataset. (See the attached csv file of this page)

3.  Acknowledgement

Andro-Profiler is developed by Hacking and Countermeasure Research Lab in the Graduate School of Information Security at the Korea University of Korea.

A two-page abstract on this work was firstly appeared in Jang, Jae-wook, et al. "Andro-profiler: anti-malware system based on behavior profiling of mobile malware." Proceedings of the companion publication of the 23rd international conference on World wide web companion. International World Wide Web Conferences Steering Committee, 2014.  The work proposed in this paper significantly enhances the prior work, technically and content-wise, including the motivation, related-work, design, and evaluation.

FP GooglePlay samples.csv
2016. 2. 24. 오후 6:52